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Object-Part Attention Model for Fine-Grained
Image Classification
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Abstract— Fine-grained image classification is to recognize
hundreds of subcategories belonging to the same basic-level
category, such as 200 subcategories belonging to the bird, which
is highly challenging due to large variance in the same subcate-
gory and small variance among different subcategories. Existing
methods generally first locate the objects or parts and then
discriminate which subcategory the image belongs to. However,
they mainly have two limitations: 1) relying on object or part
annotations which are heavily labor consuming; and 2) ignoring
the spatial relationships between the object and its parts as well
as among these parts, both of which are significantly helpful for
finding discriminative parts. Therefore, this paper proposes the
object-part attention model (OPAM) for weakly supervised fine-
grained image classification and the main novelties are: 1) object-
part attention model integrates two level attentions: object-level
attention localizes objects of images, and part-level attention selects
discriminative parts of object. Both are jointly employed to
learn multi-view and multi-scale features to enhance their mutual
promotion; and 2) Object-part spatial constraint model combines
two spatial constraints: object spatial constraint ensures selected
parts highly representative and part spatial constraint eliminates
redundancy and enhances discrimination of selected parts. Both
are jointly employed to exploit the subtle and local differences
for distinguishing the subcategories. Importantly, neither object
nor part annotations are used in our proposed approach, which
avoids the heavy labor consumption of labeling. Compared with
more than ten state-of-the-art methods on four widely-used
datasets, our OPAM approach achieves the best performance.

Index Terms— Fine-grained image classification, object-part
attention model, object-part spatial constraint model, weakly
supervised learning.

I. INTRODUCTION

F INE-GRAINED image classification is highly chal-
lenging, aiming to recognize hundreds of subcategories

under the same basic-level category, such as hundreds of
subcategories of birds [1], cars [2], pets [3], flowers [4]
and aircrafts [5]. While basic-level image classification only
needs to discriminate the basic-level category, such as bird
or car. The difference between basic-level and fine-grained
image classification is shown as Fig. 1. Fine-grained image
classification is a highly important task with wide applications,
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Fig. 1. Basic-level image classification vs. fine-grained image classification.
In basic-level image classification, we only need to classify the first two
images as bird category, distinguishing them from car category. While in fine-
grained image classification, the subcategory should be further determined
exactly. For example, the first two images belong to the subcategories of
American Crow and Fish Crow respectively.

such as automatic driving, biological conservation and cancer
detection. Fig. 2 shows the large variance in the same
subcategory and small variance among different subcategories.
It is extremely hard for human beings to recognize hundreds
of subcategories, such as 200 bird subcategories or 196 car
subcategories. Due to small variance in object appearances,
subtle and local differences are the key points for fine-grained
image classification, such as the color of back, the shape
of bill and the texture of feather for bird. These subtle and
local differences locate at the discriminative objects and
parts, most existing methods [6]–[8] generally follow the
strategy of locating the objects or parts in the image and then
discriminating which subcategory the image belongs to.

To localize the discriminative objects and parts, generating
image patches with high objectness by a bottom-up process is
generally first performed, meaning that the generated patches
contain the discriminative object or parts. Selective search [9]
is an unsupervised method that can generate thousands of such
image patches, which is extensively used in recent methods
[6], [7], [10]. Since the bottom-up process has high recall but
low precision, it is indispensable to remove the noisy image
patches and retain those containing the object or discriminative
parts, which can be achieved through top-down attention
model. In the context of fine-grained image classification,
finding the objects and discriminative parts can be regarded as
a two-level attention process, where one is object-level and the
other is part-level. An intuitive idea is to use object annotation
(i.e. bounding box of object) for object-level attention and part
annotations (i.e. part locations) for part-level attention, such
as [6], [11]–[13], but the labeling is heavily labor consuming.
This is the first limitation.

For addressing the above problem, researchers begin
focusing on how to achieve promising performance under
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Fig. 2. Illustration of challenges in fine-grained image classification: large variance in same subcategory as shown in the first row, and small variance among
different subcategories as shown in the second row. The images in (a) Birds, (b) Cars, (c) Cats and (d) Flowers are from CUB-200-2011 [1], Cars-196 [2],
Oxford-IIIT Pet [3] and Oxford-Flower-102 [4] datasets respectively.

the weakly supervised setting that neither object nor part
annotations are used in both training and testing phases.
Zhang et al. [14] propose to select the discriminative parts
through exploiting the useful information in part clusters.
Zhang et al. [7] propose an automatic fine-grained image
classification method, incorporating deep convolutional fil-
ters for both part selection and description. However, when
they select the discriminative parts, the spatial relationships
between the object and its parts as well as among these parts
are ignored, but both of them are highly helpful for finding the
discriminative parts. This causes the selected parts: (1) have
large areas of background noise and small areas of object,
(2) have large overlap with each other which leads to redun-
dant information. This is the second limitation.

For addressing the above two limitations, this paper pro-
poses the object-part attention model (OPAM) for weakly
supervised fine-grained image classification. Its main novelties
and contributions can be summarized as follows:

• Object-Part Attention Model. Most existing works rely
on object or part annotations [6], [12], [13], while labeling
is heavily labor consuming. For addressing this important
problem, we propose the object-part attention model for
weakly supervised fine-grained image classification to
avoid using the object and part annotations and march
toward practical applications. It integrates two level atten-
tions: (1) Object-level attention model utilizes the global
average pooling in CNN to extract the saliency map for
localizing objects of images, which is to learn object
features. (2) Part-level attention model first selects the
discriminative parts and then aligns the parts based on
the cluster patterns of neural network, which is to learn
subtle and local features. The object-level attention model
focuses on the representative object appearance, and the
part-level attention model focuses on the distinguishing
specific differences of parts among subcategories. Both
of them are jointly employed to boost the multi-view
and multi-scale feature learning, and enhance their mutual
promotion to achieve good performance for fine-grained
image classification.

• Object-Part Spatial Constraint Model. Most existing
weakly supervised methods [7], [14] ignore the spa-
tial relationships between the object and its parts as
well as among these parts, both of which are highly
helpful for discriminative part selection. For addressing
this problem, we propose the part selection approach

driven by object-part spatial constraint model, which
combines two types of spatial constraints: (1) Object
spatial constraint enforces that the selected parts are
located in the object region and highly representative.
(2) Part spatial constraint reduces the overlaps among
parts and highlights the saliency of parts, which elimi-
nates the redundancy and enhances the discrimination of
selected parts. Combination of the two spatial constraints
not only significantly promotes discriminative part selec-
tion by exploiting subtle and local distinction, but also
achieves a notable improvement on fine-grained image
classification.

Our previous conference paper [15] integrates two level
attentions: object-level attention selects image patches relevant
to the object, and part-level attention selects discriminative
parts, which is the first work to classify fine-grained images
without using object and part annotations in both training
and testing phases, and achieves promising results [14].
In this paper, our OPAM approach further exploits the two
level attentions to localize not only the discriminative parts
but also the objects, and employs the object-part spatial
constraint model to eliminate redundancy as well as highlight
discrimination of the selected parts: For object-level attention,
we further propose an automatic object localization approach
via saliency extraction to focus on the representative object
feature for better classification performance. It utilizes the
global average pooling in CNN for localizing objects of
images, rather than only selecting the image patches relevant
to object that have large areas of background noise or do
not contain the whole object in image like [15]. For part-
level attention, we further propose a part selection approach
driven by object-part spatial constraint model to exploit the
subtle and local differences among subcategories. It considers
the spatial relationships between object and its parts as well as
among these parts, thus avoids the problem of generating large
areas of background noise and large overlaps among selected
parts like [15]. Compared with more than ten state-of-the-
art methods on four widely-used datasets, the effectiveness
of our OPAM approach is verified by the comprehensive
experimental results.

The rest of this paper is organized as follows: Section II
briefly reviews related works on fine-grained image classifica-
tion. Section III presents our proposed OPAM approach, and
Section IV introduces the experiments as well as the result
analyses. Finally Section V concludes this paper.
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II. RELATED WORK

Most traditional methods for fine-grained image
classification follow the strategy of extracting basic low-level
descriptors like SIFT [16], and then generating Bag-of-Words
for image representation [17], [18]. However, the performance
of these methods is limited by the handcrafted features. Deep
learning has shown its strong power in feature learning, and
achieved great progresses in fine-grained image classification
[6]–[8], [11], [15], [19]–[25]. These methods can be divided
into three groups [26]: ensemble of networks based methods,
visual attention based methods and part detection based
methods.

A. Ensemble of Networks Based Methods

Ensemble of networks based methods are proposed to utilize
multiple neural networks to learn different representations of
image for better classification performance. Each subcategory
has an implied hierarchy of labels in its ontology tree. For
example, Picoides Pubescens, which is the label in species
level, has the label in genus level as Picoides and the family
level as Picidae. Wang et al. [24] first leverage the labels
of multiple levels to train a series of CNNs at each level,
which focuses on different regions of interest in images.
Different features are extracted by different level CNNs, and
combined to encode informative and discriminative features.
Finally, a linear SVM is trained to learn weights for the
final classification. However, the external labels of ontology
tree are necessary for the method of [24]. Lin et al. [25]
propose a bilinear CNN model, which is an end-to-end system
jointly combining two CNNs, each of which is adopted as
a feature extractor. The extracted features from two CNNs
at each location of image are multiplied by outer product
operation, and then pooled to generate an image descriptor.
Finally, softmax is conducted for final prediction. Despite
achieving promising results, these methods are still limited
by the lack of ability to be spatially invariant to the input
image. Therefore, Jaderberg et al. [21] propose a learnable
network, called spatial transformer, which consists of three
parts: localization network, grid generator and sampler. Four
spatial transformers in parallel are performed on images, and
capture the discriminative parts to pass to the part description
subnets. Finally, softmax is conducted on the concatenated part
descriptor for final prediction.

B. Visual Attention Based Methods

Due to attention system, humans focus on the discriminative
regions of an image dynamically, rather than receiving and
dealing with the information of entire image directly. This
natural advantage makes the attention mechanism widely
used in fine-grained image classification. Inspired by the
way how humans perform visual sequence recognition,
Sermanet et al. [27] propose the attention for fine-grained
categorization (AFGC) system. First, they process a multi-
resolution crop on the input image, where each crop is called a
glimpse. Then they use the information of glimpses to output
the next location and the next object via a deep recurrent neural

network at each step. The final prediction is computed through
the sequence of glimpses. Recently, fully convolutional neural
network is used to learn the saliency of an image for finding
the discriminative regions [28]. Liu et al. [29] use the fully
convolutional attention to localize multiple parts to get better
classification performance. Xie et al. [30] propose a novel
algorithm, called InterActive, which computes the activeness
(attention) of neurons and network connections, carrying high-
level context as well as improving the descriptive power of
low-level and mid-level neurons, thus achieves good perfor-
mance on image classification. Zhou et al. [28] use global
average pooling (GAP) in CNN to generate the saliency map
for each image. Based on the saliency map, the discriminative
region can be found. Furthermore, a diversified visual attention
network (DVAN) [31] is proposed to pursue the diversity of
attention as well as gather discriminative information. In this
paper, our OPAM approach integrates two level attention mod-
els: object-level attention model focuses on the representative
object appearance, and part-level attention model focuses on
the discriminative parts. Both of them are jointly employed
to learn multi-view and multi-scale features to enhance their
mutual promotion.

C. Part Detection Based Methods

In fine-grained image classification, subtle and local differ-
ences generally locate at discriminative parts of object, so the
discriminative part detection is crucial for fine-grained image
classification. Girshick et al. [10] propose a popular detection
method, R-CNN, which first generates thousands of candidate
image patches for each image via the bottom-up process [9],
and then selects the image patches with high classification
scores as detection results. Zhang et al. [6] utilize R-CNN
with a geometric prior to detect discriminative parts for fine-
grained image classification, and then train a classifier on the
features of detected parts for final categorization. They use
both the object and part annotations.

Recently, researchers begin focusing on how to detect
the discriminative parts under the weakly supervised setting,
which means neither object nor part annotations are used
in both training and testing phases. Simon and Rodner [20]
propose a constellation model to localize parts of object,
leveraging CNN to find the constellations of neural activation
patterns. First, neural activation maps are computed as part
detectors by using the outputs of a middle layer of CNN.
Second, a part model is estimated by selecting part detectors
via constellation model. Finally, the part model is used to
extract features for classification. Zhang et al. [7] propose an
automatic fine-grained image classification method, incorpo-
rating deep convolutional filters for both part selection and
description. They combine two steps of deep filter response
picking: The first step picks the discriminative filters that
significantly respond to specific parts in image. The second
step picks the salient regions and generates features with
spatially weighted Fisher Vector based on the saliency map
for classification. Zhang et al. [14] propose to select the
discriminative parts through exploiting the useful information
in part clusters. In our OPAM approach, we first propose an
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Fig. 3. An overview of our OPAM approach. The object-level attention model is to localize object for learning object features. The part-level attention model
is to select the discriminative parts for exploiting the subtle and local features. The outputs show the predicted subcategories.

object-part spatial constraint model to select discriminative
parts, which considers the spatial relationships between object
and its parts as well as among these parts, and then utilizes
the cluster patterns of neural network to align the parts
with the same semantic meaning together for improving the
classification performance.

III. OUR OPAM APPROACH

Our approach is based on an intuitive idea: fine-grained
image classification generally first localizes the object (object-
level attention) and then discriminative parts (part-level
attention). For example, recognizing an image which contains
a Field Sparrow follows the processes of first finding a bird,
and then focusing on the discriminative parts that distinguish
it from other bird subcategories. We propose the object-part
attention model for weakly supervised fine-grained image
classification, which uses neither object nor part annotations
in both training and testing phases, and only uses the image-
level subcategory labels. As shown in Fig. 3, our OPAM
approach first localizes objects of images through object-level
attention model for learning object features, and then selects
the discriminative parts through part-level attention model
for learning the subtle and local features. In the following
subsections, the object-level and part-level attention models
are presented respectively.

A. Object-Level Attention Model

Most existing weakly supervised works [7], [14], [20]
devote to the discriminative part selection, but ignore the
object localization, which can remove the influence of back-
ground noise in image to learn meaningful and representative
object features. Although some methods consider both object
localization and part selection, they rely on the object and part
annotations [6], [19]. For addressing this important problem,
we propose an object-level attention model based on the

saliency extraction for localizing the objects of images auto-
matically only with image-level subcategory labels, without
any object or part annotations. The model consists of two
components: patch filtering and saliency extraction. The first
component is to filter out the noisy image patches and retain
those relevant to the object for training a CNN called ClassNet,
to learn multi-view and multi-scale features for the specific
subcategory. The second component is to extract the saliency
map via global average pooling in CNN for localizing the
objects of images.

1) Patch Filtering: A large amount of training data is
significant for the performance of CNN, so we first focus on
how to expand the training data. The bottom-up process can
generate thousands of candidate image patches by grouping
pixels into regions that may contain the object. These image
patches can be used as the expansion of training data due to
their relevances to the object. Therefore, selective search [9]
is adopted to generate candidate image patches for a given
image, which is an unsupervised and widely-used bottom-
up process method. These candidate image patches provide
multiple views and scales of original image, which benefit
for training an effective CNN to achieve better fine-grained
image classification accuracy. However, these patches can not
be directly used due to the high recall but low precision, which
means some noises exist. The object-level attention model is
highly helpful for selecting the patches relevant to the object.

We remove the noisy patches and select relevant patches
through a CNN, called FilterNet, which is pre-trained on the
ImageNet 1K dataset [32], and then fine-tuned on the training
data. We define the activation of neuron in softmax layer
belonging to the subcategory of input image as the selection
confidence score, and then a threshold is set to decide whether
the given candidate image patch should be selected or not.
Then we obtain the image patches relevant to the object
with multiple views and scales. The expansion of training
data improves the training effect of ClassNet, which has two
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Fig. 4. Some results of saliency extraction by our OPAM approach. The first row shows the original images and the second row shows the saliency maps of
original images. The object localization results are shown in the third row, in which the red rectangles represent the bounding boxes automatically produced
by saliency extraction. The images in (a) Birds, (b) Cars, (c) Cats and (d) Flowers are from CUB-200-2011 [1], Cars-196 [2], Oxford-IIIT Pet [3] and
Oxford-Flower-102 [4] datasets respectively.

aspects of benefits for our OPAM approach: (1) ClassNet is
an effective fine-grained image classifier itself. (2) Its internal
features are significantly helpful to build part clusters for
aligning the parts with the same semantic meaning together,
which will be described latter in Subsection B. It is noted that
the patch filtering is performed only in the training phase and
only uses image-level subcategory labels.

2) Saliency Extraction: In this stage, CAM [28] is adopted
to obtain the saliency map Mc of an image for subcategory
c to localize the object. The saliency map indicates the
representative regions used by the CNN to identify the
subcategory of image, as shown in the second row of Fig. 4.
Then object regions of images, as shown in the third row
of Fig. 4, are obtained by performing binarization and
connectivity area extraction on the saliency maps.

Given an image I , the activation of neuron u in the last con-
volutional layer at spatial location (x, y) is defined as fu(x, y),
and wc

u defines the weight corresponding to subcategory c
for neuron u. The saliency value at spatial location (x, y) for
subcategory c is computed as follows:

Mc(x, y) =
∑

u

wc
u fu(x, y) (1)

where Mc(x, y) directly indicates the importance of activa-
tion at spatial location (x, y) for classifying an image into
subcategory c. Instead of using the image-level subcategory
labels, we use the prediction result as the subcategory c
in saliency extraction for each image. Through object-level
attention model, we localize objects in the images to train a
CNN called ObjectNet for obtaining the prediction of object-
level attention.

B. Part-Level Attention Model

Since the discriminative parts, such as head and body,
are crucial for fine-grained image classification, previous
works [6] select discriminative parts from the candidate image
patches produced by the bottom-up process like selective
search [9]. However, these works rely on the part annotations
which are heavily labor consuming. Although some works
begin to focus on finding the discriminative parts without
using any part annotations [7], [15], they ignore the spatial
relationships between the object and its parts as well as
among these parts. Therefore, we propose a new part selection

approach driven by part-level attention for exploiting the sub-
tle and local discrimination to distinguish the subcategories,
which uses neither object nor part annotations. It consists of
two components: object-part spatial constraint model and part
alignment. The first is to select the discriminative parts, and
the second is to align the selected parts into clusters by the
semantic meaning.

1) Object-Part Spatial Constraint Model: We obtain object
regions of images through object-level attention model, and
then employ object-part spatial constraint model to select
the discriminative parts from the candidate image patches
produced by the bottom-up process. Two spatial constraints are
jointly considered: object spatial constraint defines the spatial
relationship between object and its parts, and part spatial
constraint defines the spatial relationship among these parts.
For a given image I , its saliency map M and object region b
are obtained through object-level attention model. Then part
selection is driven by object-part spatial constraint model as
follows:

Let P denotes all the candidate image patches and P =
{p1, p2, ..., pn} denotes n parts selected from P as the dis-
criminative parts for each given image. The object-part spatial
constraint model considers the combination of two spatial
constraints by solving the following optimization problem:

P∗ = arg max
P

�(P) (2)

where �(P) is defined as a scoring function over two spatial
constraints as follows:

�(P) = �box(P)�part (P) (3)

Eq. 3 defines the proposed object-part spatial constraint,
which ensures the representativeness and discrimination of the
selected parts. It consists of two constraints: object spatial con-
straint �box(P) and part spatial constraint �part (P), which
should be both satisfied by all the selected parts at the same
time. For ensuring this, we choose product operation, not sum
operation, as the work [6] which utilizes product operation to
optimize two constraints.

a) Object spatial constraint: Ignoring the spatial rela-
tionship between the object and its parts causes that the
selected parts may have large areas of background noise
but small areas of discriminative region, which decreases the
representativeness of selected parts. Since the discriminative
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Fig. 5. Some results of part alignment in our OPAM approach. (a) shows the image patches which are selected through object-part spatial constraint model,
and (b) shows that the image patches are aligned into clusters via part clusters.

parts are inside the object region, an intuitive spatial constraint
function is defined as:

�box(P) =
n∏

i=1

fb(pi ) (4)

where

fb(pi ) =
{

1, IoU(pi ) > threshold

0, otherwi se
(5)

and IoU(pi) defines the proportion of Intersection-over-
Union (IoU) overlap of part region and object region. It is
noted that the object region is obtained automatically through
the object-level attention model, not provided by the object
annotation. Object spatial constraint aims to simultaneously
restrain all the selected parts inside the object region. So prod-
uct operation is utilized to ensure this, which is the same with
the work [6]. That is to say, any part that does not satisfy
object spatial constraint, e.g. its IoU value equals 0, will not
be selected as a discriminative part.

b) Part spatial constraint: Ignoring the spatial relation-
ship among these parts leads to the problem that the selected
parts may have large overlap with each other, and some
discriminative parts are ignored. The saliency map indicates
the discrimination of image, and benefits for selecting dis-
criminative parts. We jointly model saliency and the spatial
relationship among parts as follows:

�part(P) = log(AU − AI − AO) + log(Mean(MAU )) (6)

where AU is the union area of n parts, AI is the intersection
area of n parts, AO is the area outside the object region and
Mean(MAU ) is defined as follows:

Mean(MAU ) = 1

|AU |
∑

i, j

Mi j (7)

where pixel (i, j) locates in the union area of parts, Mij refers
to the saliency value of pixel (i, j), and |AU | refers to the
number of pixels that locate in the union area of n parts.
Part spatial constraint aims to select the most discriminative
parts, which consists of two items: The first item aims to
reduce the overlaps among selected parts, and is realized by

log(AU − AI − AO ), where −AI ensures the selected parts
have the least overlap, and −AO ensures the selected parts
have the largest areas inside the object region. The second
item aims to maximize the saliency of selected parts, and
is realized by log(Mean(MAU )), which denotes the average
saliency value of all the pixels in the union area of selected
parts. We hope both of the two items in Eq. 6 have the
maximum values, so sum operation is adopted.

2) Part Alignment: The selected parts through object-part
spatial constraint model are in disorder and not aligned by
its semantic meaning, as shown in Fig. 5(a). These parts
with different semantic meanings contribute to the final
prediction differently, so an intuitive idea is to align the
parts with the same semantic meaning together, as shown
in Fig. 5(b).

We are inspired by the fact that middle layers of ClassNet
show clustering patterns. For example, there are groups of
neurons significantly responding to the head of bird, and others
to the body of bird, despite the fact that they may correspond to
different poses. So clustering is performed on the neurons of a
middle layer in the ClassNet to build the part clusters for align-
ing the selected parts. We first compute the similarity matrix S,
where S(i, j) denotes the cosine similarity of weights between
two mid-layer neurons ui and u j , and then perform spectral
clustering on the similarity matrix S to partition the mid-layer
neurons into m groups. In the experiments, neurons are picked
from the penultimate convolutional layer with m set as 2, as
shown in Fig. 6, where the coordinate values represent the two
largest eigenvectors of similarity matrices among all neurons,
as the work [33].

Then we use the part clusters to align the selected parts
as follows: (1) Warp the images of selected parts to the size
of receptive field on input image of neuron in penultimate
convolutional layer. (2) Feed forward the selected parts to
the penultimate convolutional layer to produce an activation
score for each neuron. (3) Sum up the scores of neurons in
one cluster to get cluster score. (4) Align the selected parts
to the cluster with highest cluster score, which is formulated
as follows: For a given image, n discriminative parts P =
{p1, p2, ..., pn} are obtained by object-part spatial constraint
model, and then part alignment is performed on these parts
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Fig. 6. Illustration of spectral clustering. The coordinate values represent
the two largest eigenvectors of similarity matrices among all neurons.

Algorithm 1 Part Alignment

with m part clusters L = {l1, l2, ..., lm} as Algorithm 1.
The choice of middle layer has important influence on

the part alignment and classification performance. We follow
standard practice and withhold a validation set of 10% training
data for grid search to determine which layer to choose.
At last, we find the penultimate convolutional layer works
better than others. Through part-level attention model, we
select the discriminative parts in images to train a CNN called
PartNet for obtaining the prediction of part-level attention.

C. Final Prediction

For better classification performance, we fine-tune ClassNet
with the localized object and the discriminative parts to get
two classifiers, called ObjectNet and PartNet respectively.
ClassNet, ObjectNet and PartNet are all fine-grained image
classifiers: ClassNet for original images, ObjectNet for objects
and PartNet for selected discriminative parts. However, their
impacts and strengths are different, primarily because they
focus on the different natures of image.

Fig. 7. Some results of selected image patches by the object-level and part-
level attention model respectively. Image patches selected by the object-level
attention model focus on the whole objects, as shown in (a). Image patches
selected by the part-level attention model focus on subtle and local features,
as shown in (b).

Object-level attention model first drives FilterNet to select
image patches with multiple views and scales that are relevant
to the object, as shown in Fig. 7 (a). These image patches drive
ClassNet to learn more representative features and localize the
object region through saliency extraction. Part-level attention
model selects discriminative parts which contain subtle and
local features, as shown in Fig. 7 (b). The different level
focuses (i.e. original image, object of original image, and
parts of original image) have different representations and are
complementary to improve the prediction. Finally, we merge
the prediction results of the three different levels by using the
following equation:

f inal_score = α ∗ original_score + β ∗ object_score

+ γ ∗ part_score (8)

where original_score, object_score and part_score are the
softmax values of ClassNet, ObjectNet and PartsNet respec-
tively, and α, β and γ are selected by using the k-fold cross-
validation method [34]. The subcategory with the highest
f inal_score is chosen as the final prediction result.

IV. EXPERIMENTS

We conduct experiments on four widely-used datasets for
fine-grained image classification: CUB-200-2011, Cars-196,
Oxford-IIIT Pet and Oxford-Flower-102. Our proposed OPAM
approach is compared with more than ten state-of-the-art
methods to verify its effectiveness.

A. Datasets and evaluation metric

Four datasets are adopted for the experiments:

• CUB-200-2011 [1]: It is the most widely-used dataset
for fine-grained image classification, and contains
11788 images of 200 different bird subcategories, which
is divided as follows: 5994 images for training and
5794 images for testing. For each subcategory, 30 images
are selected for training and 11∼30 images for testing,
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and each image has detailed annotations: a subcategory
label, a bounding box of object, 15 part locations and
312 binary attributes. All attributes are visual in nature,
pertaining to color, pattern, or shape of a particular part.

• Cars-196 [2]: It contains 16185 images of 196 car
subcategories, and is divided as follows: 8144 images
for training and 8041 images for testing. For each sub-
category, 24∼84 images are selected for training and
24∼83 images for testing. Each image is annotated with
a subcategory label and a bounding box of object.

• Oxford-IIIT Pet [3]: It is a collection of 7349 images
with 37 different pet subcategories, among which 12
are cat subcategories and 25 are dog subcategories.
It is divided as follows: 3680 images for training
and 3669 images for testing. For each subcategory,
93∼100 images are selected for training and 88∼100
images for testing. Each image is annotated with a
subcategory label, a pixel level segmentation marking the
body and a tight bounding box of head.

• Oxford-Flower-102 [4]: It has 8189 images of 102 sub-
categories belonging to flowers, 1020 for training, 1020
for validation and 6149 for testing. One image may
contains several flowers. Each image is annotated with
a subcategory label.

Accuracy is adopted as the evaluation metric to comprehen-
sively evaluate the classification performances of our OPAM
approach and compared methods, which is widely used for
evaluating the performance of fine-grained image classification
[6], [7], [14], and is defined as follows:

Accuracy = Ra

R
(9)

where R means the number of testing images and Ra counts
the number of images which are correctly classified.

B. Details of the networks

In the experiments, the widely-used CNN of VGGNet [34]
is adopted. It is noted that the CNN used in our proposed
approach can be replaced with the other CNNs. In our
approach, CNN has two different effects: localization and clas-
sification. Therefore, the architectures of CNNs are modified
for different functions:

1) Localization: In the object-level attention model, CNN
is used to extract the saliency map of an image for object
localization. Zhou et al. [28] find that the accuracy of local-
ization can be improved if the last convolutional layer before
global average pooling has a higher spatial resolution, which is
termed as the mapping resolution. In order to get a higher spa-
tial resolution, the layers after conv5_3 are removed, resulting
in a mapping resolution of 14 × 14. Besides, a convolutional
layer of size 3 × 3, stride 1, pad 1 with 1024 neurons is
added, followed by a global average pooling layer and a
softmax layer. The modified VGGNet is pre-trained on the
1.3M training images of ImageNet 1K dataset [32], and then
fine-tuned on the fine-grained image classification dataset.
The number of neurons in softmax layer is set as the number
of subcategories.

2) Classification: The CNN used in the experiments for
classification is the VGGNet [34] with batch normaliza-
tion [35]. For the prediction results of original image, object
and parts, the same CNN architecture is used but fine-tuned
on different training data. For the prediction of original image,
we fine-tune the CNN on the image patches selected through
object-level attention model, as ClassNet. For the predictions
of object and part, we fine-tuned the CNNs on the images of
objects and images of parts based on ClassNet respectively,
as ObjectNet and PartNet. Then we can get prediction results
of the three different levels in Eq. 8. We follow the work [6]
to select the 3 parameters (i.e. α, β and γ ) by k-fold cross-
validation method [34]. Considering that the scale of training
dataset is small, we set k as 3 to ensure that each subset
of the training dataset is not too small, which guarantees a
better selection of parameters. We follow [34] to randomly
split the training dataset D into 3 mutually exclusive subsets
D1, D2, D3 of equal size. We conduct experiment 3 times.
For each time t , we train on D\Dt and test on Dt . For
parameter selection, we traverse the value of each parameter
from 0 to 1 by step of 0.1. We select the parameters that
obtain the highest classification accuracy. Finally, for CUB-
200-2011, Cars-196, Oxford-IIT Pet and Oxford-Flower-102
datasets, (α, β, γ ) are set as (0.4, 0.4, 0.2), (0.5, 0.3, 0.2),
(0.4, 0.4, 0.2) and (0.4, 0.3, 0.3).

C. Comparisons with the state-of-the-art methods

This subsection presents the experimental results and
analyses of our OPAM approach on four widely-used
fine-grained image classification datasets as well as the state-
of-the-art methods. Table I shows the comparison results on
CUB-200-2011 dataset. The object, part annotations and CNN
features used in these methods are listed for fair comparison.
CNN models shown in the column of “CNN Features”, such
as VGGNet [34] and GoogleNet [61], indicate which CNN
model this method adopts to extract CNN features. If the
column is empty, it means that the result of this method is
produced by handcrafted feature like SIFT.

Early works [38], [43], [44] choose SIFT [16] as features,
and the performances are limited and much lower than our
OPAM approach no mater whether using the object and
part annotations or not. Our approach is the best among
all methods under the same setting that neither object nor
part annotations are used in both training and testing phases,
and obtains 1.20% higher accuracy than the best compared
result of FOAF [8] (85.83% vs. 84.63%). It is noted that the
CNN used in FOAF is pre-trained not only on ImageNet 1K
dataset [32] but also on the dataset of PASCAL VOC [60],
while our approach does not use the external dataset like
PASCAL VOC. Compared with the second highest result
of PD [7], our approach achieves 1.29% higher accuracy
(85.83% vs. 84.54%). Our OPAM approach improves 7.93%
than our previous conference paper [15], and it verifies the
effectiveness of further exploitation in our OPAM approach,
which jointly integrates the object-level and part-level attention
models to boost the multi-view and multi-scale feature learn-
ing and enhance their complementarity. Besides, our OPAM
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TABLE I

COMPARISONS WITH STATE-OF-THE-ART METHODS ON CUB-200-2011 DATASET

TABLE II

COMPARISONS WITH STATE-OF-THE-ART METHODS ON CARS-196 DATASET

approach employs the object-part spatial constraint model to
exploit the subtle and local discrimination for distinguishing
the subcategories.

Our approach performs better than the methods which focus
on the CNN architectures, such as STN [21] and Bilinear-
CNN [25]. In STN, GoogleNet [61] with batch normaliza-
tion [35] is adopted to achieve the accuracy of 82.30% by
only fine-tuning on CUB-200-2011 dataset without any other
processing. Two different CNNs are employed in Bilinear-
CNN: VGGNet [34] and VGG-M [62]. The classification
accuracies of the two methods are both 84.10%, which are
lower than our approach by 1.73%.

Furthermore, our approach outperforms the methods which
use object annotation, such as Coarse-to-Fine [39], PG Align-
ment [12] and VGG-BGLm [13]. Moreover, our approach
outperforms methods that use both object and part annotations
[6], [23]. Neither object nor part annotations are used in our
OPAM approach, which makes fine-grained image classifica-
tion march toward practical application.

Besides, the results on Cars-196, Oxford-IIIT Pet and
Oxford-Flower-102 datasets are shown in Tables II, III and IV
respectively. The trends of results on these three datasets
are similar as CUB-200-2011 dataset, our OPAM approach
achieves the best results among state-of-the-art methods
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TABLE III

COMPARISONS WITH STATE-OF-THE-ART METHODS ON OXFORD-IIIT PET DATASET

TABLE IV

COMPARISONS WITH STATE-OF-THE-ART METHODS ON OXFORD-FLOWER-102 DATASET

TABLE V

PERFORMANCES OF COMPONENTS IN OUR OPAM APPROACH ON CUB-200-2011, CARS-196,
OXFORD-IIIT PET AND OXFORD-FLOWER-102 DATASETS

(92.19%, 93.81% and 97.10% respectively) and brings 0.89%,
0.36% and 0.70% improvements than the best results of
compared methods respectively.

D. Performances of components in our OPAM approach

Detailed experiments are performed on our OPAM approach
from the following three aspects:

1) Effectivenesses of object-level attention and part-level
attention models: In our OPAM approach, the final prediction
score is generated by merging the prediction scores of three
different images, i.e. original image, image of object and
images of parts, which are denoted as “Original”, “Object-
level” and “Part-level”. The effectivenesses of object-level

and part-level attention models are verified in the following
paragraphs. From Table V, Fig. 8 and 9, we can observe that:

• Object-level attention model improves the classification
accuracy via localizing objects of images for learning
global features. Comparing with the result of “Original”,
it improves by 2.92%, 2.00%, 2.84% and 0.62% on four
datasets respectively, and combining “Object-level” with
“Original” improves even more, i.e. by 3.97%, 4.36%,
4.06% and 1.85% on four datasets respectively. The
classification accuracy of part-level attention model is
not higher than “Original”. Fig. 9 shows some failure
results of part selection. We conclude that our proposed
part selection approach may fail in following two cases:
1) Objects are hard to be distinguished from the back-
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Fig. 8. Some results of object localization and part selection. The first row denotes the original images, the second row denotes the localized objects of
original images via object-level attention model, and the third and fourth rows denote the selected discriminative parts via part-level attention model. The
images in (a) Birds, (b) Cars, (c) Cats and (d) Flowers are from CUB-200-2011 [1], Cars-196 [2], Oxford-IIIT Pet [3] and Oxford-Flower-102 [4] datasets
respectively.

Fig. 9. Some failure results of part selection. The images in (a) Birds,
(b) Cars, (c) Cats and (d) Flowers are from CUB-200-2011 [1], Cars-196 [2],
Oxford-IIIT Pet [3] and Oxford-Flower-102 [4] datasets respectively.

ground. 2) Objects are in heavy occlusion. In these two
cases, it is hard to localize the object accurately so the part
selection fails, which is based on the object localization.
The failure of part selection is the first reason of lower
accuracy only with part. Another reason is that part-
level attention focuses on the subtle and local features of
object, containing less information than original image.
However, despite these challenging cases, “Part-level”
still achieves considerable classification accuracies, which
is better than some state-of-the-art methods, such as
[13] and [37]. Besides, it is complementary with original
image and object, so their combination further boosts
the classification accuracy and achieves the best result
compared with state-of-the-art methods.

• Combining object-level and part-level attention models
achieves more accurate results than only one level
attention model, e.g. 84.73% vs. 83.74% and 80.65% on
CUB-200-2011 dataset. Combining the two level
attention models with “Original” improves a lot than
“Original”, i.e. by 5.01%, 5.40%, 5.67% and 2.4% on the

four datasets respectively. It shows the complementarity
of object-level and part-level attention models in fine-
grained image classification. The two level attention
models have different but complementary focuses: the
object-level attention model focuses on differences
of representative object appearances, while the part-
level attention model focuses on the subtle and local
differences of discriminative parts among subcategories.
Both of them are jointly employed to boost the multi-
view and multi-scale feature learning and enhance their
mutual promotion to achieve better performance for
fine-grained image classification.

• We observe that “Original+Part-level” is better
than “Object-level+Part-level”, which shows the
complementarity between “Original” and “Part-level”
is stronger than that between “Object-level” and “Part-
level”. This is because: 1) Parts are selected based on
the obtained object regions, which leads to the fact
that selected parts are mostly inside object regions
and cover the whole object regions. This causes that
the complementarity between object and part is small.
2) Object localization may be wrong and cause that
the localized object region does not contain the whole
object, some areas of this object are outside the object
region. These areas may be helpful for classification,
which are not in the localized object region but in the
original image. 3) Image also includes the information
of background, which may be helpful for classification
to a certain extent. So “Original+Part-level” can
provide more supplementary information than “Object-
level+Part-level”, thus achieves better performance.
Totally, “Original+Object-level+Part-level” further
improves the classification accuracy due to the comple-
mentary information among image, object and part.

• Fig. 8 shows some results of object localization and
part selection by our OPAM approach. The first row
denotes the original images, the second row denotes
the localized objects of original images via object-level
attention model, and the third and fourth rows denote
the selected discriminative parts via part-level attention
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Fig. 10. Examples of part selection from our previous conference paper [15] (left column) and our OPAM approach in this paper (right column). “PA” refers
to part alignment which is adopted in our previous conference paper [15], “OPSC” refers to object-part spatial constraint model, and “OPSC+PA” refers to
combining the above two approaches, which is adopted in our OPAM approach. The yellow and orange rectangles denote the selected discriminative parts via
the two approaches, which respond to the heads and bodies of objects. The images in (a) Birds, (b) Cars, (c) Cats and (d) Flowers are from CUB-200-2011 [1],
Cars-196 [2], Oxford-IIIT Pet [3] and Oxford-Flower-102 [4] datasets respectively.

TABLE VI

PERFORMANCES OF OBJECT-PART SPATIAL CONSTRAINT MODEL, PART ALIGNMENT AND THEIR COMBINATION

model. For CUB-200-2011, Cars-196 and Oxford-IIIT
Pet datasets, the selected parts have explicit semantic
meanings, where the third row denotes the head of object
and the fourth denotes the body. For Oxford-Flower-102
dataset, there are two types of images: one contains
only one flower, and the other contains multiple flowers.
For the images containing only one flower, object means
the flower and parts mean the discriminative regions
of the flower, such as petal, flower bud or receptacle.
For the images containing multiple flowers, object means
the salient flower or the entirety of all flowers in image,
and parts mean the discriminative regions of the flower
or one single individual of the flowers. Our proposed
approach is effective in both two cases, which localizes
the discriminative objects and parts as well as learns
fine-grained features to boost classification accuracy. It is
noted that neither object nor part annotations are used
in our OPAM approach, which avoids the heavy labor
consumption of labeling as well as pushes fine-grained
image classification towards practical applications.

2) Effectivenesses of object-part spatial constraint model
and part alignment: Compared with our previous conference
paper [15], which only performs part alignment for selecting
discriminative parts, we further employ object-part spatial
constraint model to drive the discriminative part selection. The
object spatial constraint ensures selected parts with high rep-
resentativeness, while part spatial constraint eliminates redun-
dancy and enhances discrimination of selected parts. Both of
them are jointly employed to exploit the subtle and local dis-
crimination for distinguishing the subcategories. In Fig. 10 and

Table VI, “OPSC” refers to the object-part spatial constraint
model, “PA” refers to part alignment which is adopted by
our previous conference paper [15], and “OPSC+PA” refers
to combining the above two ones, which is adopted by our
OPAM approach. From the left columns of four datasets in
Fig. 10, we can see that only performing part alignment in
part-level attention model without object-part spatial constraint
causes the selected parts: (1) have large areas of background
noise but small areas of object, (2) have large overlap with
each other which leads to the redundant information. From
Table VI, we can see that the classification accuracies of parts
selected by object-part spatial constraint model (“OPSC”) are
better than parts selected with part alignment (“PA”) on all
4 datasets. Besides, applying part alignment on the basis of
object-part spatial constraint further improves the classification
performance. This verifies that aligning discriminative parts
with the same semantic meaning together can further improve
the results of part-level attention model.

3) Effectiveness of patch filtering: Through patch filtering
in the object-level attention model, some image patches are
selected from the candidate image patches. These patches are
relevant to objects, and provide multiple views and scales
of original images. These relevant patches are used to train
ClassNet to boost the effectiveness of ClassNet. In Table VII,
“ft-patches” refers to fine-tuning on image patches selected
through patch filtering in object-level attention model and
“ft-original” refers to fine-tuning only on original images.
The results are the classification accuracies of prediction on
original images. Fine-tuning on the selected image patches
achieves better accuracy due to the effectiveness of multi-view
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TABLE VII

PERFORMANCES OF PATCH FILTERING

and multi-scale feature learning based on the patch filtering in
our OPAM approach.

V. CONCLUSION

In this paper, the OPAM approach has been proposed for
weakly supervised fine-grained image classification, which
jointly integrates two level attention models: object-level local-
izes objects of images, and part-level selects discriminative
parts of objects. The two level attentions jointly improve
the multi-view and multi-scale feature learning and enhance
their mutual promotion. Besides, part selection is driven by
the object-part spatial constraint model, which combines two
spatial constraints: object spatial constraint ensures the high
representativeness of selected parts, and part spatial constraint
eliminates redundancy and enhances discrimination of selected
parts. Combination of the two spatial constraints promotes
the subtle and local discrimination localization. Importantly,
our OPAM avoids the heavy labor consumption of labeling
to march toward practical application. Comprehensive experi-
mental results show the effectiveness of our OPAM approach
compared with more than ten state-of-the-art methods on four
widely-used datasets.

The future work lies in two aspects: First, we will focus on
learning better fine-grained representation via more effective
and precise part localization methods. Second, we will also
attempt to apply semi-supervised learning into our work to
make full use of large amounts of web data. Both of them
will be employed to further improve the fine-grained image
classification performance.
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